Nanodcal 量子输运计算软件

Nanodcal 是一款基于非平衡态格林函数-密度泛函理论(NEGF - DFT)的第一性原理计算软件,主要用于模拟器件材料中的非线性、非平衡的量子输运过程,是目前国内唯一一款拥有自主知识产权的基于第一性原理的输运软件。可预测材料的电流 - 电压特性、电子透射几率等众多输运性质。

计算对象

hkx1.png

计算功能

156367520991372540735422335.png

相关产品

hkx3.jpg

经典应用

半导体电子器件设计


通过对nSi-HfO2-Al MOS器件进行HfO2不同位置的化学修饰,研究器件的隧穿势垒和隧穿电流。

hkx4.jpg


参考文献:Direct tunneling through high-κ amorphous HfO2: Effects of chemical modification[J]. Journal of Applied Physics, 2014, 116(2): 023703.



STM仿真


采用Co-MnPc-Co/Cu(111)理论模型,模拟自旋极化探针并与实验STM相结合探测分子电导。

hkx5.jpg


参考文献:Spin-Polarized Transport through Single Manganese Phthalocyanine Molecules on a Co Nanoisland[J]. The Journal of Physical Chemistry C, 2015, 119(6): 3374-3378.



分子电子器件


通过polyphenyl-ZGNRs分子器件设计,理论研究分子磁隧道结的输运性质,以评估其在自旋过滤器设计中的潜在应用。

hkx6.jpg


参考文献: Giant tunnel magneto-resistance in graphene based molecular tunneling junction[J]. Nanoscale, 2016, 8(6): 3432-3438.



磁隧道结器件


通过设计MnAl/MgO/MnAl不同接触终端的磁隧道结,研究器件的磁晶各向异性以及自旋依赖的输运性质。

hkx7.jpg


参考文献:Hard-hard coupling assisted anomalous magnetoresistance effect in amine-ended single-molecule magnetic junction[J]. Journal of Chemical Physics, 2017, 146(22): 8.



光电流器件


通过构建锑烯器件模型,理论预测锑烯器件的光电流的各向异性与消光比。

hkx10.jpg

hkx8.jpg


参考文献: A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy[J]. Journal of Materials Chemistry C, 2018, 6(10): 2509-2514.



二维柔性材料器件


通过对Nanodcal软件可以使用非正交盒子的计算特点,文献实现了任意夹角导线体系的构建和计算,研究导线非共线情况下柔性黑磷弯曲后的输运性质。

hkx9.jpg


参考文献: All-phosphorus flexible devices with non-collinear electrodes: a first principles study[J]. Physical Chemistry Chemical Physics, 2018, 20(10): 7167-7172.

主要文献列表

[1] Taylor, J. Guo, H. & Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 63, 245407[J]. Physical Review B, 2001, 63(24):245407


[2] Taylor J, Guo H, Wang J. Ab initio, modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60, device.  Phys.rev.b, 2001, 63(12): 121104(R).


[3] Zhao Y, Hu Y, Liu L, et al. Helical States of Topological Insulator Bi2Se3[J].Nano Letters, 2011, 11(5): 2088-2091.


[4] Wang B, Wang J. Spin polarized I-V characteristics and shot noise of Pt atomic wires[J]. Physical Review B Condensed Matter, 2011, 84(16): 8538-8541.


[5] Oliver D J, Maassen J, El Ouali M, et al. Conductivity of an atomically defined metallic interface[J]. Proceedings of the National Academy of Sciences, 2012,109(47): 19097-19102.


[6] Saraiva-Souza A, Smeu M, Terrones H, et al. Spin transport of polyacetylene chains bridging zigzag graphene nanoribbon electrodes: A nonequilibrium treatment of structural control and spin filtering[J]. The Journal of Physical Chemistry C, 2013,117(41): 21178-21185.


[7] Tao L L, Liang S H, Liu D P, et al. Large magnetoresistance of paracyclophane-based molecular tunnel junctions: A first-principles study[J].  Journal of Applied Physics, 2013, 114(21): 213906.


[8] Saraiva-Souza A, Smeu M, Zhang L, et al. Molecular spintronics: destructive quantum interference controlled by a gate[J]. Journal of the American Chemical Society, 2014, 136(42): 15065-15071.


[9] Tao L L, Liang S H, Liu D P, et al. Tunneling magnetoresistance in Fe3Si/MgO/Fe3Si (001) magnetic tunnel junctions[J]. Applied Physics Letters, 2014, 104(17): 172406.


[10] Tian X, Liu L, Du Y, et al. Variable electronic properties of lateral phosphorene–graphene heterostructures[J]. Physical Chemistry Chemical Physics, 2015, 17(47): 31685-31692.


[11] Chen Y R, Chen K Y, Dou K P, et al. Electron transport through polyene junctions in between carbon nanotubes: An ab initio realization[J]. Carbon, 2015, 94: 548-553.


[12] Chen M, Yu Z, Xie Y, et al. Spin-polarized quantum transport properties through flexible phosphorene[J]. Applied Physics Letters, 2016, 109(14): 142409.


[13] Zhou S, Guo Y, Zhao J. Enhanced thermoelectric properties of graphene oxide patterned by nanoroads[J]. Physical Chemistry Chemical Physics, 2016,  18(15): 10607-10615.


[14] Yu Y, Zhou Y, Wan L, et al. Photoinduced valley-polarized current of layered MoSby electric tuning[J]. Nanotechnology, 2016, 27(18): 185202.


[15] Zheng X, Chen X, Zhang L, et al. Perfect spin and valley polarized quantum transportin twisted SiC nanoribbons[J]. 2D Materials, 2017, 4(2): 025013.


[16] Zhou J,Zhao W, Peng S, et al. High Tunnel Magnetoresistance in Mo/CoFe/MgO Magnetic Tunnel Junction: A First-Principles Study[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-4.


[17] Gao G, Li Z, Chen M, et al. Effect of molybdenum disulfide nanoribbon on quantum transport of graphene[J]. Journal of Physics: Condensed Matter, 2017, 29(43): 435001.


[18] Jiang P, Tao X, Hao H, et al. Tuning a zigzag SiC nanoribbon as a thermal spincurrent generator[J]. 2D Materials, 2017, 4(3): 035001.


[19] Yang X F, Zou X L, Kuang Y W, et al. Adatom-induced local reconstructions in zigzag silicene nanoribbons: Spin semiconducting properties and large spin thermopowers[J]. Chemical Physics Letters, 2017, 667: 113-119.


[20] Liu Y Q, Cui H L, Wei D. Effects of Spin–Orbit Coupling on Nonequilibrium Quantum Transport Properties of Hybrid Halide Perovskites[J]. The Journal of Physical Chemistry C, 2018, 122(8): 4150-4155.


[21] Sun M, Wang X, Mi W. Large Magnetoresistance in Fe3O4/4, 4′-Bipyridine/Fe3O4Organic Magnetic Tunnel Junctions[J]. The Journal of Physical Chemistry C, 2018, 122(5): 3115-3122.


[22] Tao X, Zhang L, Zheng X, et al. h-BN/graphene van der Waals vertical heterostructure: a fully spin-polarized photocurrent generator[J]. Nanoscale,  2018, 10(1): 174-183.


[23] Kaun C C, Chen Y C. Thermoelectric Charge and Spin Current Generation in Magnetic Single-Molecule Junctions: First-Principles Calculations[J]. The Journal of Physical Chemistry C, 2018.


[24] Li S, Wang T, Chen X, et al. Self-powered photogalvanic phosphorene photodetectors with high polarization sensitivity and suppressed dark current[J]. Nanoscale, 2018, 10(16): 7694-7701.


[25] Yin L, Wang X, Mi W. Spin-dependent electronic transport characteristics in Fe4N/BiFeO3/Fe4 N perpendicular magnetic tunnel junctions[J]. Journal of Applied  Physics, 2018, 123(3): 033905.



技术支持

上鸿元信息科技(上海)有限公司愿竭力为用户和企业提供全方位的技术支持和服务。

电话:021-61766008 售前咨询:Sale@ihongyuan.com 技术服务:service@ihongyuan.com